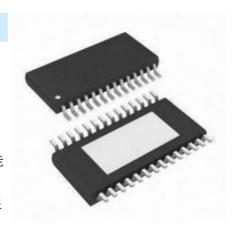


MS8847 双路 H 桥驱动器集成电路

产品简述


MS8847 是双路 H 桥驱动电路。提供适用于家用电器和其他 机电一体化应用。该器件可用于驱动一个步进电机或其它负载。

每个输出驱动器通道包含采用 H 桥配置的 N 通道功率 MOSFET。这个设计将每个驱动器的接地端接至引脚,用来实现电流检测。

内置一个通用比较器,可用来做电流限制电路或者其他功能 电路。

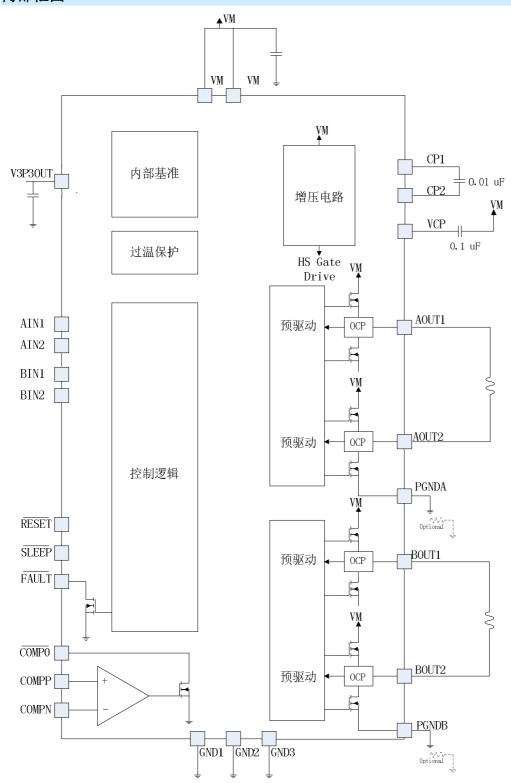
MS8847 每个通道上提高达 2.5A 峰值电流或者 1.75A 均方根输出电流。

该芯片具有过流保护,短路保护,欠压保护以及过温保护功能。

主要特点

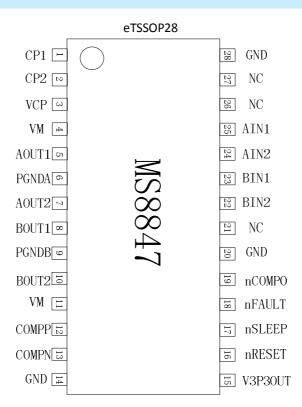
- 双路 H 桥驱动器
- 用于 Low_side 电流检测引脚
- 功率管低导通电阻
- 24V, 25℃下 2.5A 最大峰值电流
- 内置比较器
- 内置 3.3V 10mA 低压降稳压器(LDO)
- 8-36V 电源电压范围
- 带散热片的表面贴片封装

应用


- HVAC 电机
- 消费类产品
- 办公自动化设备
- 工厂自动化
- 机器人

产品规格分类

产品	封 装 形 式	丝印名称
MS8847	eTSSOP28(9.8X4.5x1.1)	MS8847



内部框图

管脚排列图

管脚描述

管脚描述			
管脚编号	管脚名称	管脚属性	管脚描述
1	CP1	10	电荷泵外接电容
2	CP2	10	电荷泵外接电容
3	VCP	10	高端栅电压驱动
4	VM	-	电源电压
5	AOUT1	0	全桥 A 的 OUT1 输出
6	PGNDA	-	全桥 A 地端,可接 sense 电阻设置过流保护
7	AOUT2	0	全桥 A 的 OUT2 输出
8	BOUT1	0	全桥 B 的 OUT1 输出
9	PGNDB	-	全桥 B 地端,可接 sense 电阻设置过流保护
10	BOUT2	0	全桥 B 的 OUT2 输出
11	VM	-	电源电压
12	СОМРР	I	内置比较器正端
13	COMPN	I	内置比较器负端
14	GND	-	接地脚
15	V3P3OUT	0	内置 3.3V LDO 输出
16	nRESET	I	复位脚
17	nSLEEP	I	休眠脚
18	nFAULT	OD	错误警告,开漏输出
19	СОМРО	OD	比较器输出,开漏输出
20	GND	-	接地脚
21	NC	-	悬空
22	BIN2	I	控制全桥 B 的输出
23	BIN1	I	控制全桥 B 的输出
24	AIN2	I	控制全桥 A 的输出
25	AIN1	I	控制全桥 A 的输出
26	NC	I	悬空
27	NC	I	悬空
28	GND	-	接地脚

极限参数

绝对最大额定值

注意: 绝对最大额定值表示不被破坏的限界,不保证实际工作状态

Electron to discover to the contract of the co					
参数	符号	额定值	单位		
供电电压	V _M	-0.3-40	V		
工作环境温度	T _A	-40~+120	$^{\circ}$ C		
存储温度	Tstg	-60∼+150	$^{\circ}$ C		
持续输出电流	I _{con}	1.75	A		
管脚电压 (PGNDA,PGNDB)	V _{PGND}	±600	mV		
数字端口电压范围	V _{Din}	-0.5-7	V		
比较器输入电压范围	V _{Din}	-0.5-7	V		

电气参数

VM=24V

注意:没有特别规定,环境温度为 Ta = 25℃ ±2℃。

电源参数:

参数	符号	测试条件	最小值	典型值	最大值	单位
电源电压范围	VM	- 8			36	V
工作电流	IVM	VM=24V, fPWM<50KHz		1	5	mA
休眠模式电流	IVMQ	VM=24V		500	800	uA
欠压保护电压	VUVLO	-		6.3	8	V

稳压器:

参数	符号	测试条件	最小值	典型值	最大值	单位
内置 LDO 驱动电流	ILDO	-	0		10	mA
内置 LDO 输出电压	V3P3	lout=0 to 10mA	3.1		3.52	V

数字 Ⅰ/0:

参数	符号	测试条件	最小值	典型值	最大值	单位
逻辑输入高电平	VIH	VIH -			5.25	V
逻辑输入低电平	VIL	-		0.6	0.7	V
迟滞窗口	VHYS	VDD=2.7∼3.6V	50		600	mV
逻辑输入低电流	IIL	VIN=0	-5		5	uA
逻辑输入高电流	IIH	VIN=3.3V			100	uA
下拉电阻	RPD			80		ΚΩ

nFAULT和nCOMPO输出(开漏输出):

参数	符号	测试条件	最小值	典型值	最大值	单位
输出低电压	VOL	IO=5mA			500	mV
输出高电流	IOH	VO=3.3V			1	uA

H桥输出管:

参数	符号	测试条件	最小值	典型值	最大值	单位
	Rdson	VM=24V,IO=1A, Tj=25℃		0.21		Ω
H 桥高端 FET 导通电阻		VM=24V,IO=1A, Tj=85℃		-	0.39	Ω
H 桥低端 FET 导通电阻	Rdson	VM=24V,IO=1A, Tj=25℃		0.22	0.39	Ω
		VM=24V,IO=1A, Tj=85℃		-	0.39	Ω
关闭状态漏电流	IOFF	-	-2		2	uA
死区时间	tDEAD	-		100		ns
驱动管地端电压	VGNDX	-	-500		500	mV

保护电路:

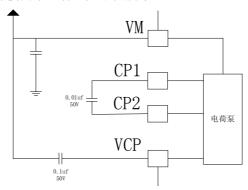
参数	符号	测试条件	最小值	典型值	最大值	单位
过流保护	IOCP	-	3			А
过流保护检测时间	tOCP	-		6		us
过温保护	TTSD	-	150	160	180	${\mathbb C}$

功能描述

输出级

MS8847 为双路 H 桥驱动器。并且双路 H 桥低端的驱动 FET 的源级都做成了独立端口(PGNDA,PGNDB),通过这些端口接个电阻到地,即可实现电流检测的功能。如果应用时接上了检测电阻,务必保证 PGNDx 端口电压不得超过±500mV。

通道控制时序


时序如下:

xIN1	xIN2	xOUT1	xOUT2
0	0	z	Z
0	1	L	Н
1	0	Н	L
1	1	L	L

电荷泵

由于输出级采用的为 N 沟道 FET,所需的栅压驱动比电源电压高才能使得管子完全打开。 MS8847 内 部集成了电荷泵电路产生这个高压,

正常工作时, 电荷泵电路需要外接两个电容, 如下图所示:

当进入 SLEEP 模式时, 电荷泵关闭。

内置比较器

MS8847 内部集成了一个比较器,该比较器可以用来做电流限制或者其他功能。

nRESET和nSLEEP控制功能

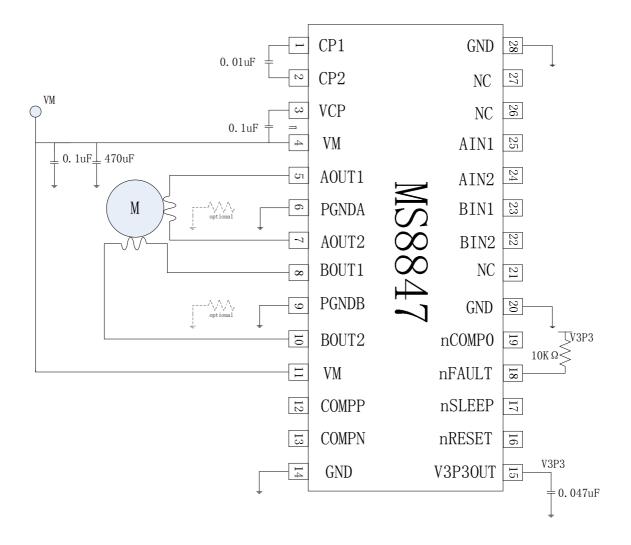
当 nRESET 脚为低时,芯片复位。同时当它有效时,可以将所有输出通道关闭,并且输入信号将不会对输出产生影响。芯片内部有上电启动复位电路,所以应用时不需要外加上电复位信号。

当 nSLEEP 脚为低时,芯片进入低功耗休眠模式。这个状态下输出将被关闭,电荷泵也被关闭,所有的内部逻辑复位(包括错误信号)。该模式下,输出不会受到输入信号的影响直到 nSLEEP 信号变成高。当由休眠模式进入工作模式时,大约需要 1ms 时间,整个芯片输出驱动达到满工作状态。需要注意的是,在休眠模式下,内部 3.3VLDO 会继续保持工作状态。

保护电路

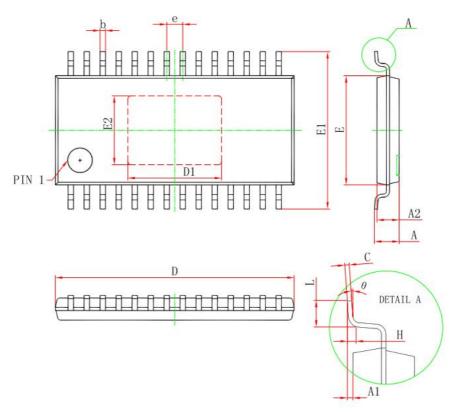
MS8847 具有欠压保护,过流保护,以及过温保护功能。

MS8847 的过流保护包括两个过程: 快速响应,慢速响应。在很短的时间内,超过快速响应的过流保护阈值,芯片将会采用模拟模式保护芯片不会流过过高的尖峰电流。如果这个尖峰持续时间超过芯片内设定的时间(大约 6us),芯片将相应通道关闭,并且在 nFAULT 输出低信号。只有重新复位或者重新上电才能使通道打开。


当芯片的温度超过设定的阈值,过温保护电路将起作用,此时所有通道都会关闭,并且 nFAULT 输出一个低电平信号。当温度回落至安全温度,芯片将回到正常工作状态。

当芯片的电源电压降低到欠压保护的阈值以下,芯片将关闭所有通道,复位内部逻辑电路,并且在 nFAULT 输出低电平信号。当电压回到阈值以上时,芯片回到正常工作状态。

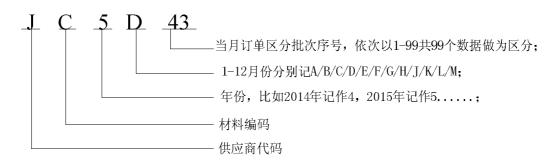
典型应用图


MS8847 典型的应用如下图所示:

封装外形图

eTSSOP28:

	Dimensions I	n Millimeters	Dimensions In Inches			
Symbol	Min	Max	Min	Max		
D	9.600	9.800	0.378	0.386		
D1	3.710	3.910	0.146	0.154		
E	4.300	4.500	0.169	0.177		
b	0.190	0.300	0.007	0.012		
С	0.090	0.200	0.004	0.008		
E1	6.250	6.550	0.246	0.258		
E2	2.700	2.900	0.106	0.122		
А		1.100		0.043		
A2	0.800	1.000	0.031	0.039		
A1	0.020	0.150	0.001	0.006		
e	0.65	0.65(BSC)		6(BSC)		
L	0.500	0.700	0.02	0.0		
Н	0.25	0.25(TYP)		0.01(TYP)		
θ	1°	7°	1°	7°		


印章与包装规范

一、印章内容介绍

eTSS0P28

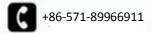
一,印章内容介绍 产品型号: MS8847 生产批号: XXXXXX 范例: JC5D43

二、印章规范要求

采用激光打印,整体居中且采用 Arial 字体。

三、包装规范

型号	封装形式	只/盘	盘/盒	只/盒	盒/箱	只/箱
MS8847	eTSSOP28	3000	1	3000	8	24000



MOS电路操作注意事项:

静电在很多地方都会产生,采取下面的预防措施,可以有效防止MOS电路由于受静电 放电的影响而引起的损坏:

- 1、操作人员要通过防静电腕带接地。
- 2、设备外壳必须接地。
- 3、装配过程中使用的工具必须接地。
- 4、必须采用导体包装或抗静电材料包装或运输。

杭州市滨江区伟业路1号 高新软件园 9号楼 701室

http://www.relmon.com